Transmission Power and Antenna Allocation for Energy-Efficient RF Energy Harvesting Networks with Massive MIMO
نویسندگان
چکیده
The optimum transmission strategy for maximizing energy efficiency (EE) of a multi-user massive multiple-input multiple-output (MIMO) system in radio frequency energy harvesting networks is investigated. We focus on dynamic time-switching (TS) antennas, to avoid the practical problems of power-splitting antennas, such as complex architectures, power loss and signal distortion when splitting the power of the received signal into power for information decoding (ID) and energy harvesting (EH). However, since a single TS antenna cannot serve ID and EH simultaneously, the MIMO system is considered in this paper. We thus formulate an EE optimization problem and propose an iterative algorithm as a tractable solution, including an antenna selection strategy to optimally switch each TS antenna between ID mode and EH mode using nonlinear fractional programming and the Lagrange dual method. Further, the problem is solved under practical constraints of maximum transmission power and outage probabilities for a minimum amount of harvested power and rate capacity for each user. Simulation results show that the proposed algorithm is more energy-efficient than that of baseline schemes, and demonstrates the trade-off between the required amount of harvested power and energy efficiency.
منابع مشابه
Reduced Switching Connectivity for Power-Efficient Large Scale Antenna Selection
In this paper, we explore reduced-connectivity radio frequency (RF) switching networks for reducing the analog hardware complexity and switching power losses in antenna selection (AS) systems. In particular, we analyze different hardware architectures for implementing the RF switching matrices required in AS designs with a reduced number of RF chains. We explicitly show that fully-flexible swit...
متن کاملImproved Performance of RF Energy Powered Wireless Sensor Node with Cooperative Beam Selection
RF energy harvesting is a promising potential solution to provide convenient and perpetual energy supplies to low-power wireless sensor networks. In this paper, we investigate the energy harvesting performance of a wireless sensor node powered by harvesting RF energy from existing multiuser MIMO system. Specifically, we propose a random unitary beamforming (RUB) based cooperative beam selection...
متن کاملAntenna Design and Non Linear Simulation of Rectifier for Wideband and Multi-Tone Radio Frequency Energy Harvesting
In this paper, a wideband rectenna without using matching networks is presented. In addition of wide bandwidth, the omnidirectional radiation pattern, maximum radio frequency to dc conversion efficiency, harvesting capability of the minimum input power level, easy fabrication process cause this antenna be a good choice for radio frequency energy harvesting applications. Matching network has bee...
متن کاملEnergy Efficient Power Allocation for the Uplink of Distributed Massive MIMO Systems
In this paper, an energy efficient power allocation scheme is proposed for a distributed massive multiple-input multiple-output (MIMO) system with a circular antenna array. Single-antenna users simultaneously transmit signal to the base station (BS) with a large number of distributed antennas. The tight approximation of the energy efficiency (EE) is derived in closed form expressions. Through j...
متن کاملAdaptive Antenna Selection and Power Allocation in Downlink Massive MIMO Systems
Received Mar 3, 2017 Revised Aug 7, 2017 Accepted Aug 25, 2017 Massive multi-input, multi-output (MIMO) systems are an exciting area of study and an important technique for fifth-generation (5G) wireless networks that support high data rate traffic. An increased number of antenna arrays at the base station (BS) consumes more power due to a higher number of radio frequency (RF) chains, which can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017